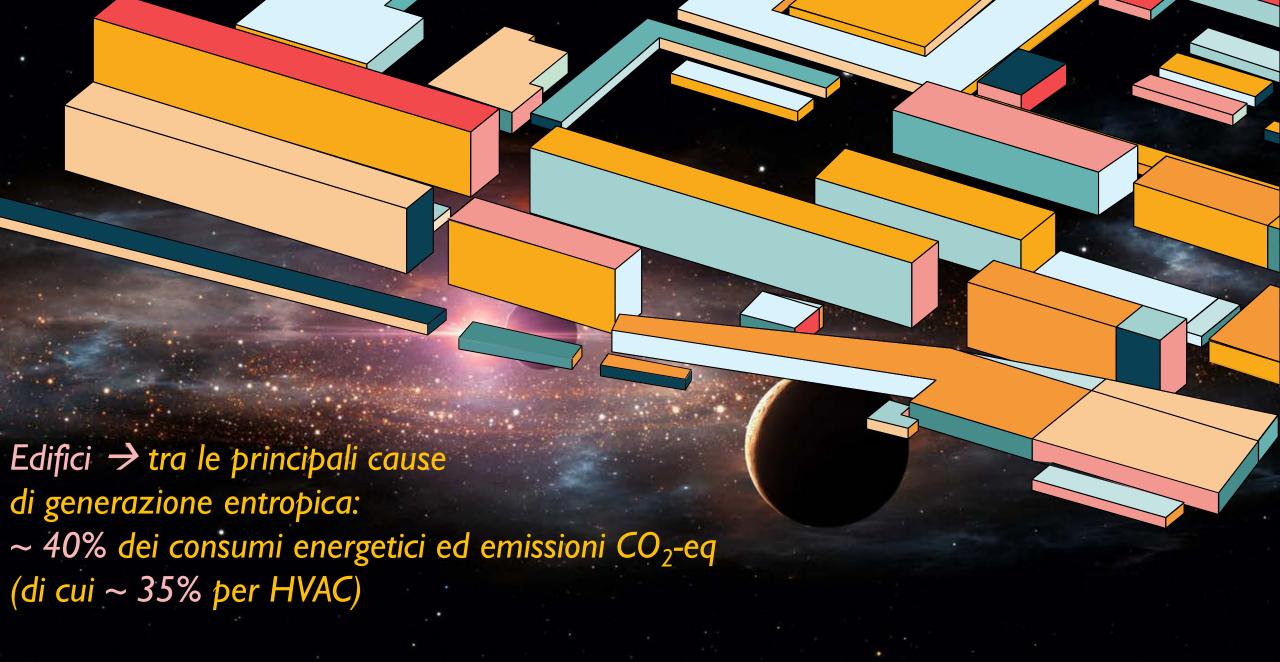


Sommario

- Edifici, Energia, Entropia
- ➤ Il ruolo degli Incentivi
- ➤ Tecnologie per l'Efficientamento
 - Standard
 - Innovative
- Come simulare le prestazioni dell'edificio?
- Ristrutturazione Energetica: Casi Studio
- Risparmi conseguibili: Numeri e Parole



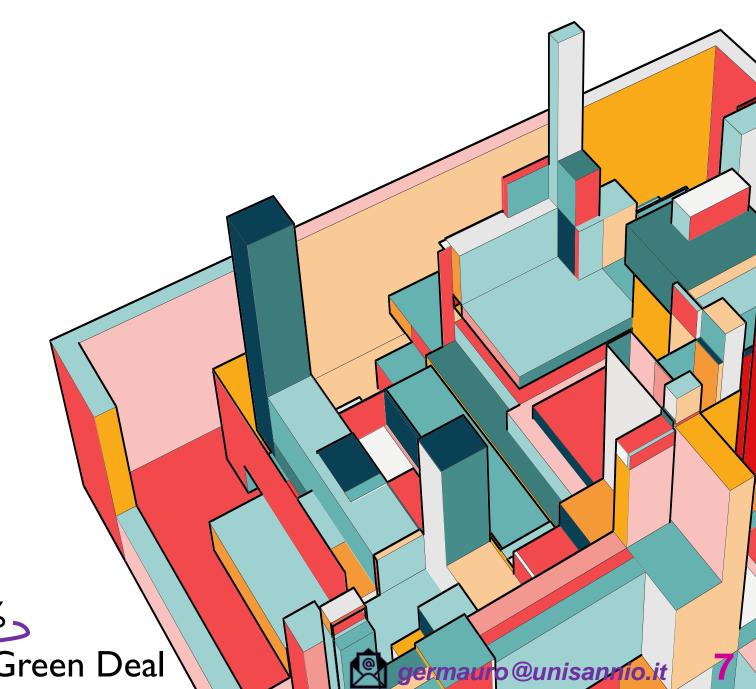
(Rudolf Clausius 1822 $\rightarrow \infty$)

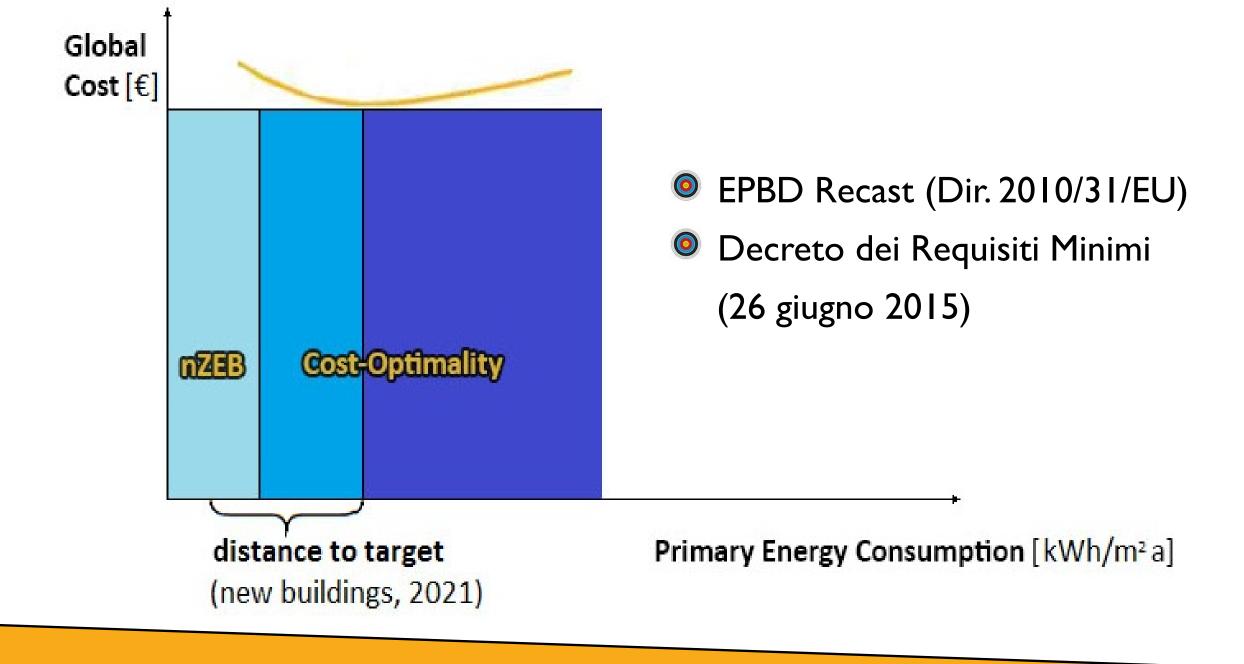
«measure of the loss of useful power»

Esercizio degli Edifici → tra le principali spese per le famiglie (~ 1300 €/anno)

Efficientare gli edifici significa:

- ridurre consumi ed emissioni: prospettiva pubblica
- prospettiva privata

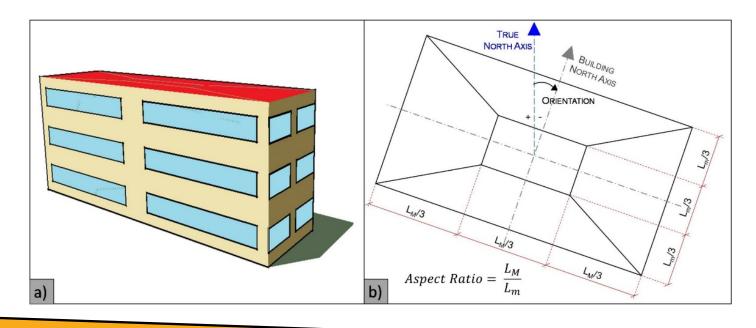

Problemi:


- costi di investimento
- mentalità/status quo

Gli incentivi devono:

- oniugare le due prospettive
- vincere l'attrito/status quo
- \nearrow \(\gamma\) \(\text{renovation rate}\): \(\lambda\) \(\frac{1}{3}\)

«carbon neutraliy» entro 2050 – Green Deal



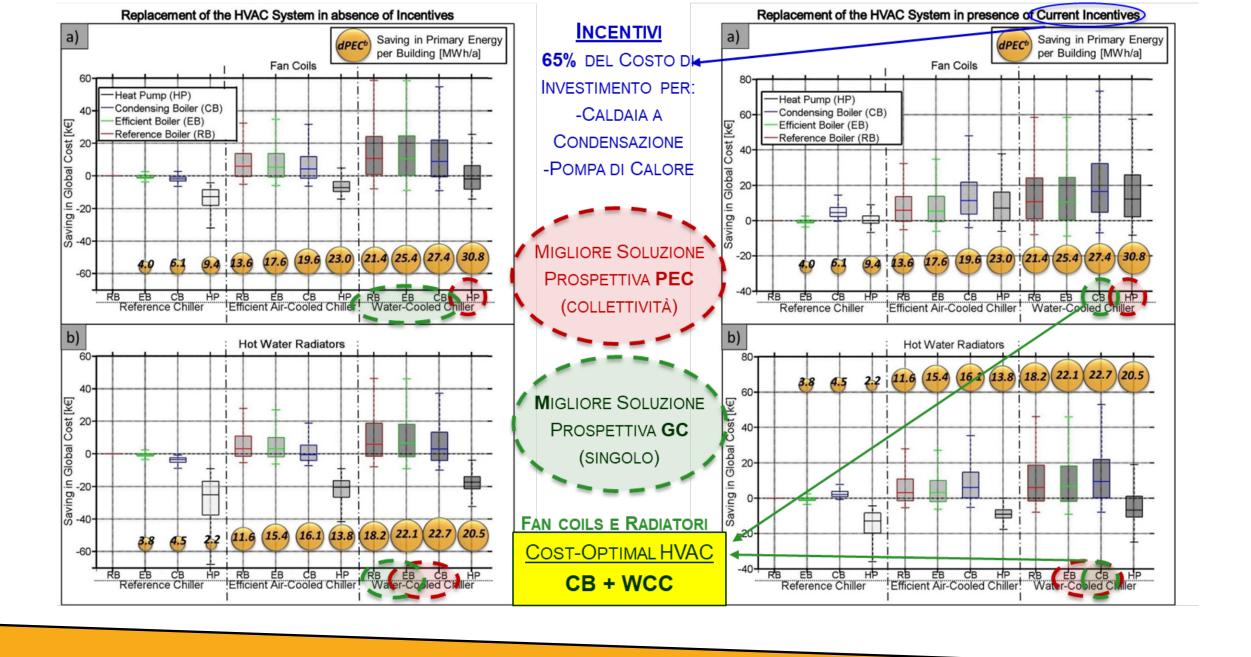
Caso studio: Edifici ad uso ufficio costruiti nel Sud Italia nel periodo 1920-70

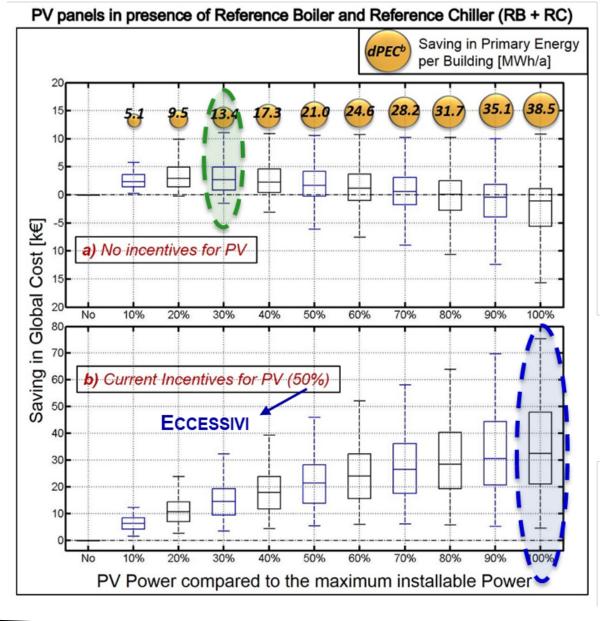
46 parametri **30** involucro

9 geometria

7 esercizio/impianti

PARAMETERS	RefB	DISTRIBUTION	μ	σ	RANGE
Orientation (North Axis)	0°	uniform	-	-	0; ±30; ±60; 90
Area of each Floor [m ²]	216	uniform	-	-	100 ÷ 500
Form Ratio	1.5	uniform	-	-	1 ÷ 5
Floor Height [m]	3.4	uniform	-	-	2.7 ÷ 4.2
Window to Wall Ratio: S	29 %	uniform	-	-	10 ÷ 40
Window to Wall Ratio: E	33 %	uniform	-	-	10 ÷ 40
Window to Wall Ratio: N	17 %	uniform	-	-	10 ÷ 40
Window to Wall Ratio: W	33 %	uniform	-	-	10 ÷ 40
Number of Floors	2	uniform			1; 2; 3; 4; 5
o Air Gap R [m ² K/W]	0.156	normal	RefB	0.01	0.116 ÷0.196
1 Roof a	0.5	normal	RefB	0.2	0.1 ÷ 0.9
2 External Walls a	0.5	normal	RefB	0.2	0.1 ÷ 0.9
Thickness of Concrete [m]	0.15	normal	RefB	0.05	0.05 ÷ 0.25
4 Type of Glass	Single	uniform	-	-	Single/Double
5 Type of Frame	Wood	uniform	-	-	Wood/Aluminum
6 Clay t [m]	0.06	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
7 Clay k [W/m K]	0.12	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
s Clay d [kg/m³]	450	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
Clay c [J/kg K]	1200	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
Expanded Clay t [m]	0.05	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
Expanded Clay k [W/m K]	0.27	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
n Expanded Clay d [kg/m ²]	900	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
B Expanded Clay c [J/kg K]	1000	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
4 External Brick t [m]	0.12	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
External Brick k [W/m K]	0.72	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
s External Brick d [kg/m³]	1800	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
F External Brick c [J/kg K]	840	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
Floor Block t [m]	0.18	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
Floor Block k [W/m K]	0.66	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
o Floor Block d [kg/m³]	1800	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
Floor Block c [J/kg K]	840	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
n Internal Brick t [m]	0.08	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
Internal Brick k [W/m K]	0.9	normal	RefB	0.2 μ	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
4 Internal Brick d [kg/m³]	2000	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
s Internal Brick c [J/kg K]	840	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
s Roof Block t [m]	0.22	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
7 Roof Block k [W/m K]	0.66	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
Roof Block d [kg/m³]	1800	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
Roof Block c [J/kg K]	840	normal	RefB	0.2 д	$(\mu - 3\sigma) \div (\mu + 3\sigma)$
o People Density [people/m²]	0.12	normal	RefB	0.2 д	$(\mu - 2\sigma) \div (\mu + 2\sigma)$
H Light Load [W/m²]	15	normal	RefB	0.2 д	$(\mu - 2\sigma) \div (\mu + 2\sigma)$
Equipment Load [W/m²]	15	normal	RefB	0.2 д	$(\mu - 2\sigma) \div (\mu + 2\sigma)$
Infiltration Rate [h-1]	0.5	normal	RefB	0.2 д	$(\mu - 2\sigma) \div (\mu + 2\sigma)$
4 Heating Set Point T [°C]					19 ÷ 22
S Cooling Set Point T [°C]		normal	RefB	1	24 ÷ 27
6 Heating Terminals	Fc1+/Rad(4)	uniform	-	-	Fc/Rad
Heati Cooli Heati	ng Set Point T [°C] ing Set Point T [°C]	ng Set Point T [°C] 20 ing Set Point T [°C] 26 ng Terminals Fc ⁽¹⁾ /Rad ⁽²⁾	ng Set Point T [°C] 20 normal ing Set Point T [°C] 26 normal ng Terminals Fc(1)/Rad(2) uniform	ng Set Point T [°C] 20 normal RefB ing Set Point T [°C] 26 normal RefB ng Terminals Fc(1)/Rad(2) uniform -	ng Set Point T [°C] 20 normal RefB 1 ing Set Point T [°C] 26 normal RefB 1 ng Terminals Fc(1)/Rad(2) uniform - -

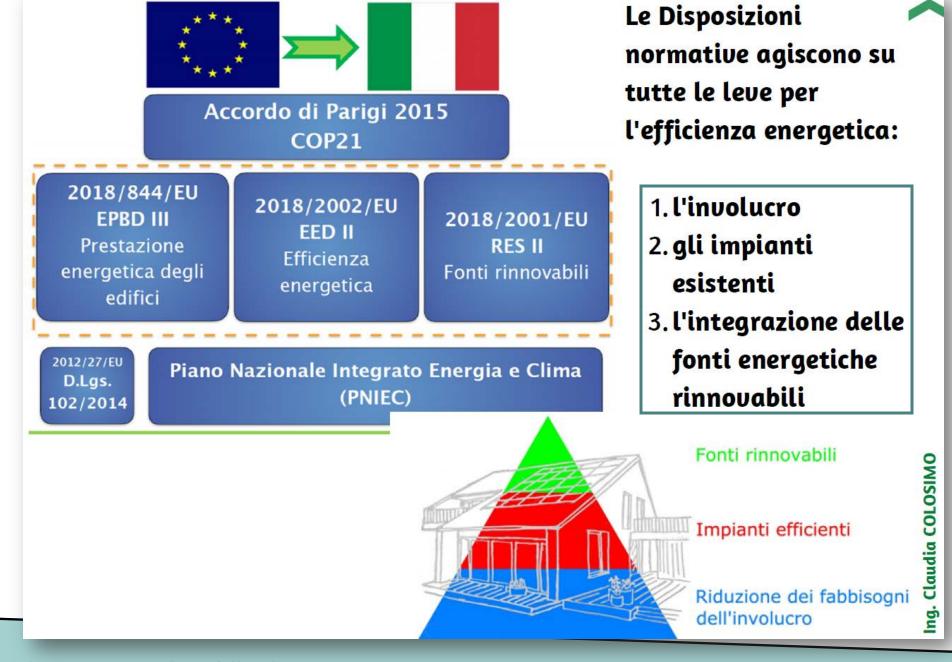



Misure di Retrofit Energetico

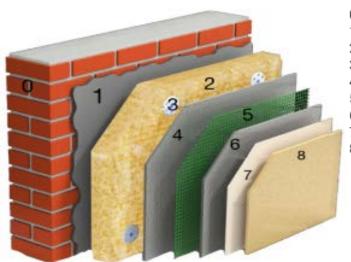
H	IEATING SYSTEM	DESCRIPTION	INVESTMENT COST[€]		
RB	Reference Boiler	Existing natural gas boiler,	_		
KD	Reference Boller	nominal LCV ⁽¹⁾ efficiency equal to 0.85	_		
EB	Efficient Boiler	New natural gas boiler,	45×kW _p + 1500		
LD	Efficient Boner	nominal LCV efficiency equal to 0.95	43^KWp + 1300		
СВ	Condensing Boiler	Condensing natural gas boiler, nominal LCV efficiency	80×kW _p + 1900		
СВ	Condensing Boner	$(T_w^{(2)}=35/55 \text{ °C})$ equal to 1.06	30^KWp + 1900		
HP	Heat Pump	Air-water heat pump, nominal COP	150×kW _p + 5000		
111	ricat i ump	$(T_w=40/45 \text{ °C}; T_e^{(3)}=7 \text{ °C})$ equal to 3.7	130 A W p + 3000		
C	OOLING SYSTEM	DESCRIPTION	INVESTMENT		
	OOLING SISILM		Cost[€]		
RC	Reference Chiller	Existing air-cooled chiller, nominal COP (T _w =12/7°C;	_		
RC	reservate conner	T _e =35°C) equal to 2.4			
ACC	Efficient Air-Cooled	New air-cooled chiller, nominal COP	150×kW _p + 5000		
ACC	Chiller	$(T_w=12/7^{\circ}C; T_e=35^{\circ}C)$ equal to 3.5	130^KWp + 3000		
WCC	Water-Cooled	Water-cooled chiller with cooling tower,	250×kW _p + 8000		
wcc	Chiller	Chiller nominal COP (T _w =12/7°C; T _c ⁽⁴⁾ =28°C) equal to 5.0		230^KWp + 8000	

(1)Lower Calorific Value; (2)Water inlet/outlet temperatures; (3)External Temperature; (4)Water inlet temperature to condenser

INCENTIVI ASSUNTI

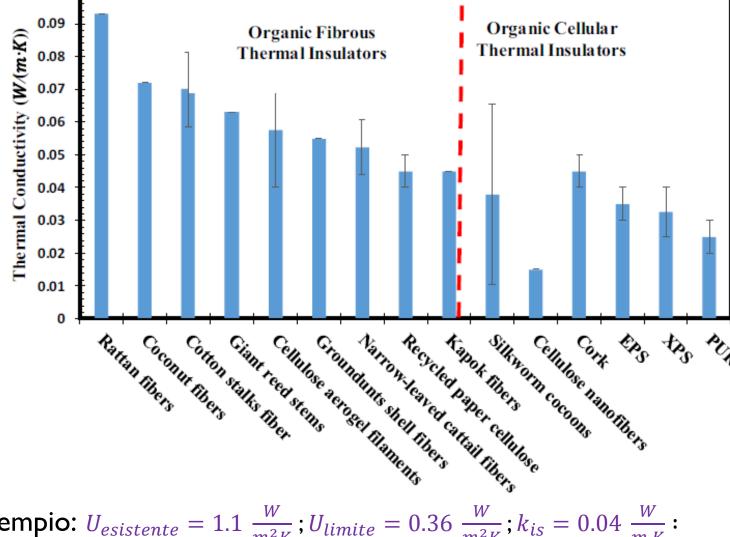

-65% DELL'INVESTIMENTO PER
POMPE DI CALORE
-65% DELL'INVESTIMENTO PER
CALDAIE A CONDENSAZIONE
-50% DELL'INVESTIMENTO PER
PANNELLI FOTOVOLTAICI

INCENTIVI PROPOSTI

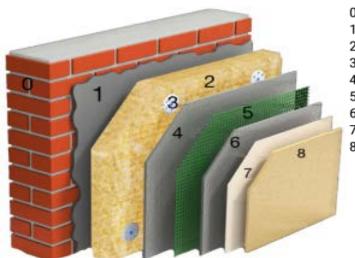

-70% DELL'INVESTIMENTO
PER POMPE DI CALORE IN
PRESENZA DI FAN COILS
-65% DELL'INVESTIMENTO
PER CALDAIE EFFICIENTI IN
PRESENZA DI RADIATORI
-40% DELL'INVESTIMENTO
PER PANNELLI FOTOVOLTAICI

REPLACEMENT OF THE HVAC SYSTEM + PV PANELS	р	dPEC _b MWh/a per building	D _b k€ per building	π kWh/€
CURRENT INCENTIVES	0.99	62.7	44.6	1.41
Proposed Incentives	0.96	62.8	37.8	1.66

PERCENTUALE DI RISPARMIO DI ESBORSO STATALE PROFITTO
EDIFICI CON PEC EFFETTIVO EFFETTIVO PER STATALE
RISPARMIO SUL GC PER EDIFICIO EDIFICIO dPEC_b/D_b


Cappotto Termico

- 0- Wall
- 1- Adhesive
- 2- Thermal insulation
- 3- Dowel
- 4- Base coat
- 5- Reinfrorcement
- 6- Key coat
- 7- Finishing coat
- 8- Decorative coat


$$U = \frac{1}{\frac{1}{\alpha_{int}} + \sum_{i} \frac{s_i}{k_i}} + \sum_{j} R_{s,NO\ LASTRA,j} + \frac{1}{\alpha_{est}}$$

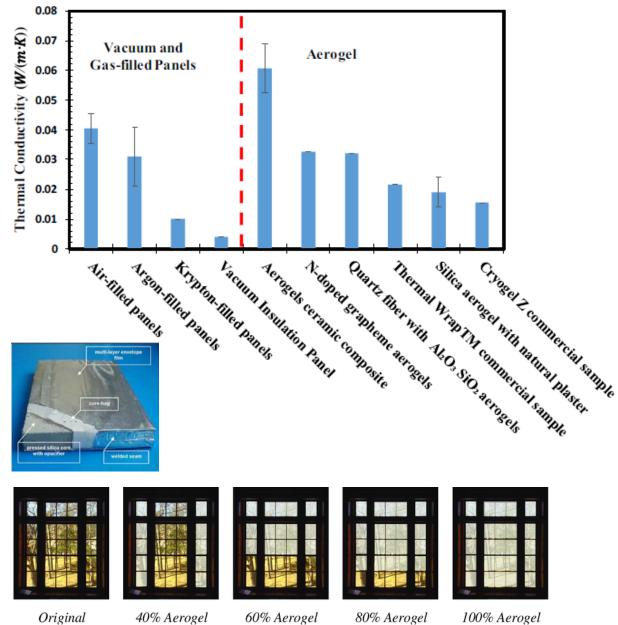
$$s_{is,min} = k_{is} \left(\frac{1}{U_{limite}} - \frac{1}{U_{esistente}} \right)$$

⇒ Esempio:
$$U_{esistente} = 1.1 \frac{W}{m^2 K}$$
; $U_{limite} = 0.36 \frac{W}{m^2 K}$; $k_{is} = 0.04 \frac{W}{m K}$: $s_{is,min} = 7.5 \text{ cm}$

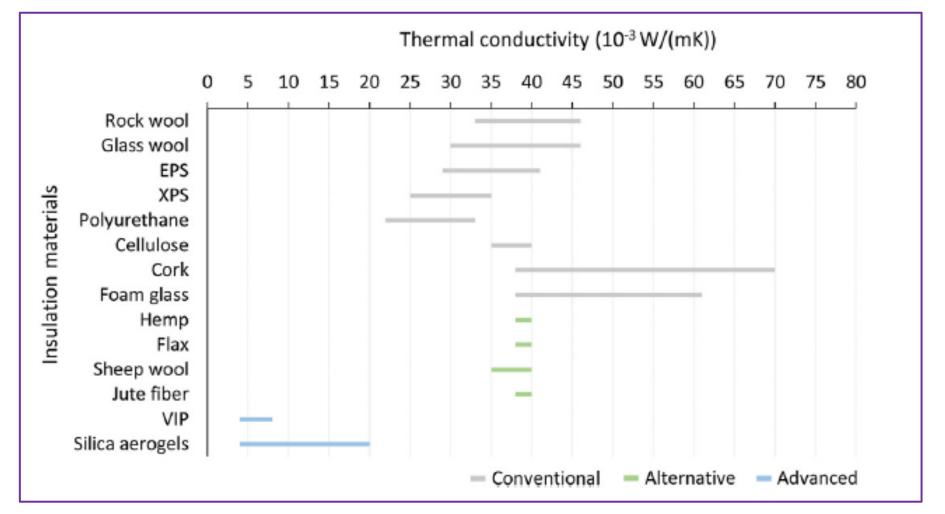
Cappotto Termico

- 0- Wall
- 1- Adhesive
- 2- Thermal insulation
- 3- Dowel
- 4- Base coat
- 5- Reinfrorcement
- 6- Key coat
- 7- Finishing coat
- 8- Decorative coat

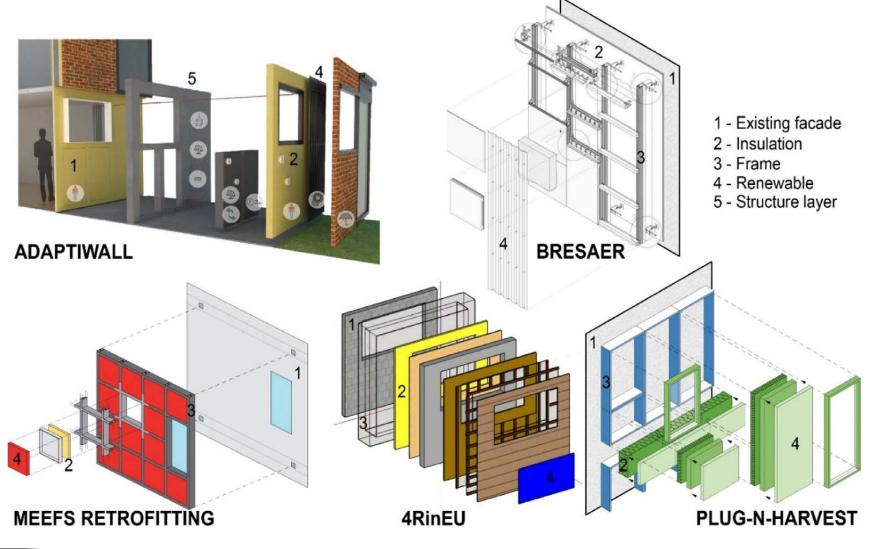

$$U = \frac{1}{\frac{1}{\alpha_{int}} + \sum_{i} \frac{S_i}{k_i}} + \sum_{j} R_{s,NO\ LASTRA,j} + \frac{1}{\alpha_{est}}$$


$$s_{is,min} = k_{is} \left(\frac{1}{u} - \frac{1}{u} \right)$$

$$\Rightarrow \text{ Esempio: } U_{esistente} = 1.1 \frac{W}{m^2 K}; U_{limite} = 0.36 \frac{W}{m^2 K}; k_{is} = 0.04 \frac{W}{m K}:$$


$$s_{is,min} = 7.5 \text{ cm}$$

Termoisolanti Innovativi


Termoisolanti Innovativi

Esempio VIP:
$$U_{esistente} = 1.1 \frac{W}{m^2 K}$$
; $U_{limite} = 0.36 \frac{W}{m^2 K}$; $k_{is} = 0.005 \frac{W}{m K}$:

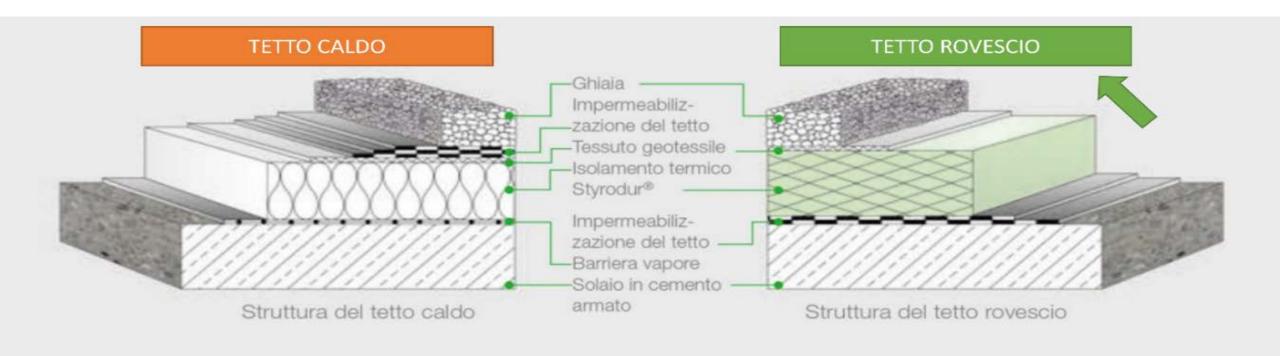
 $s_{is,min} = 0.9 \text{ cm}$

Facciate Integrate

«Integrano»:

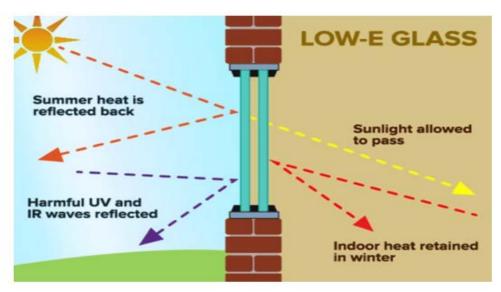
- ✓ isolamento termico
- ✓ ombreggiamento
- ✓ PCMs
- ✓ impianti/recuperatori
- ✓ rinnovabile

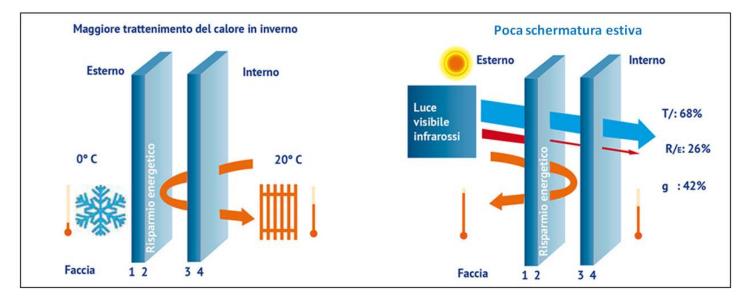
Facciate Responsive/Adattive

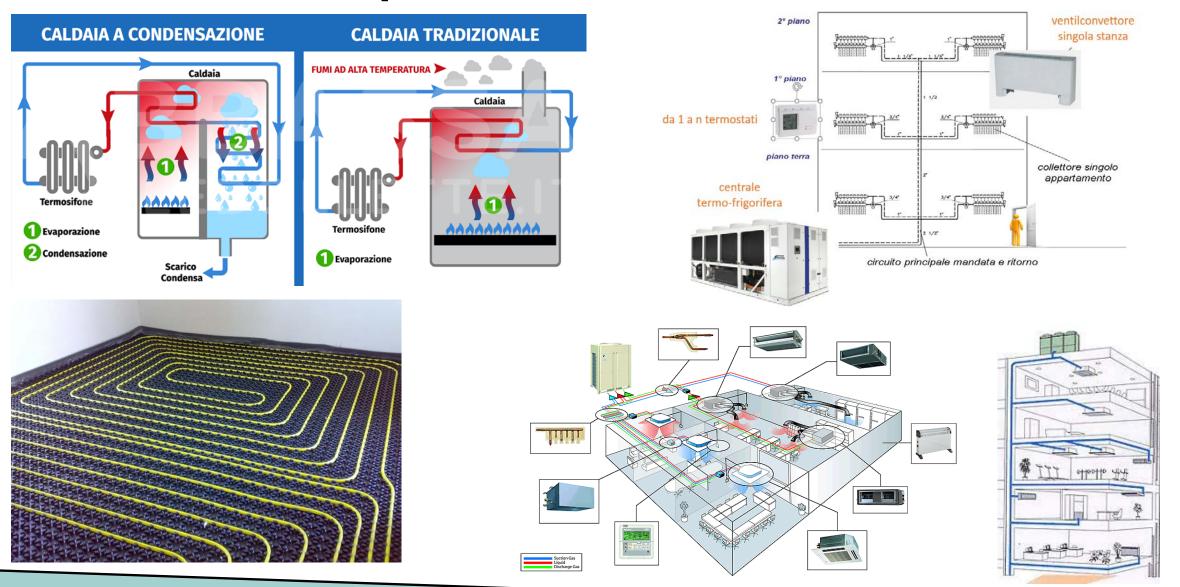

Example of intelligent façade [60]: GSW Headquarters in Berlin (Germany).

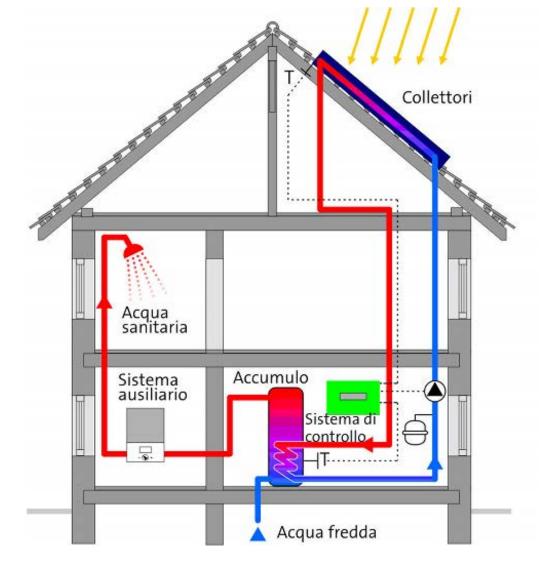
«Adattano» al clima:

- ✓ isolamento termico
- √ capacità termica
- ✓ ombreggiamento
- ✓ ventilazione


Isolamento Coperture



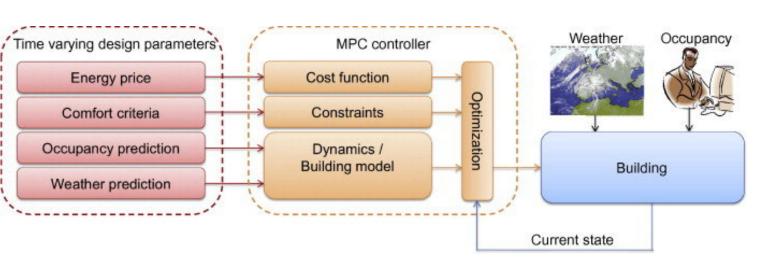

Sostituzione Serramenti

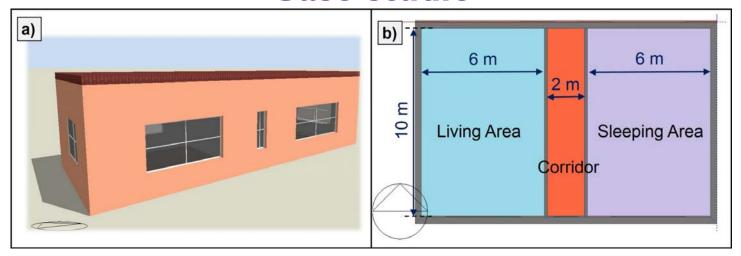

Sostituzione Impianti di Riscaldamento/Raffrescamento

Caldaie a condensazione/ Pompe di Calore per ACS

Payback period < 5 anni

Impianto Fotovoltaico Integrato




Payback period < 10 anni

Model Predictive Control

Caso studio

Tecnologie Innovative

Il controllo è ottimizzato in base a:

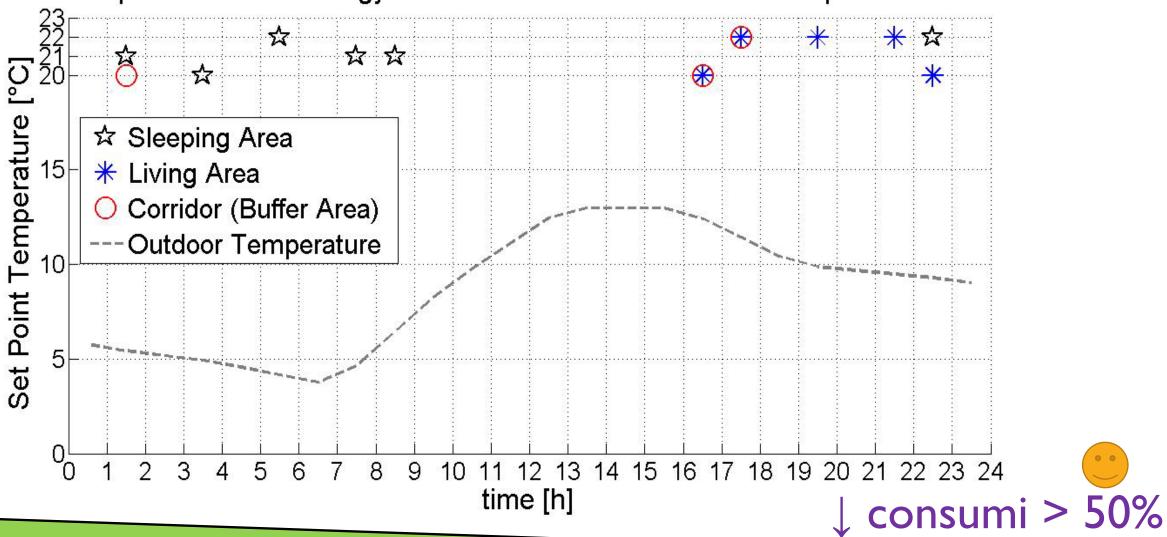
- previsioni meteo
- o previsioni di occupazione

Consente di:

- ✓ sfruttare inerzia termica
- ✓ massimizzare efficienza impianti
- ✓ consumare energia razionalmente

Vantaggi:

- ✓ ↓ consumi
- ↑ comfort

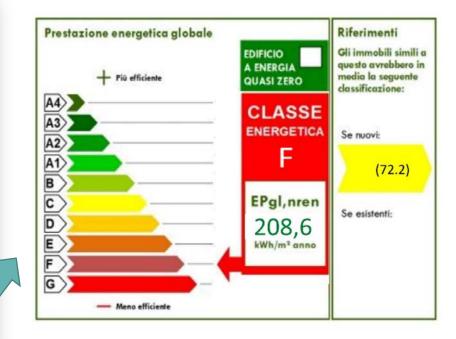


Svantaggi:

✓ complessità → simulatore + ottimizzatore

Model Predictive Control

Optimal control strategy for a maximum value of PPD^{MAX} equal to 20%



Comunità Energetiche

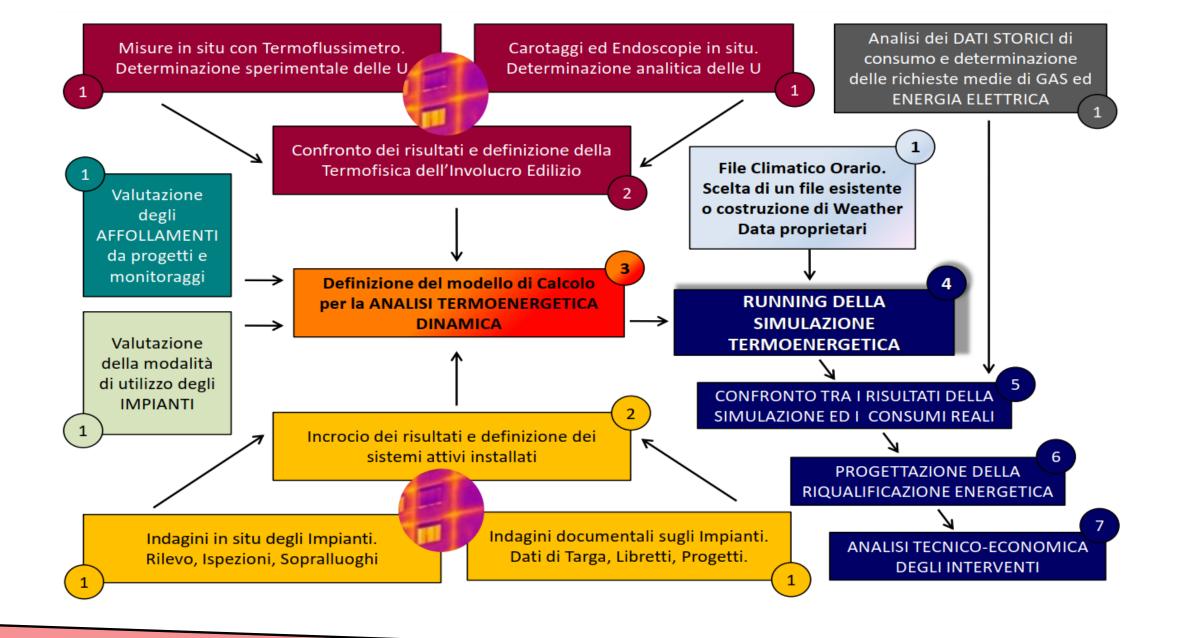
DATI DI INPUT DI MASSIMA	APE	PROG	DE
rilievo geometrico	Х	Х	Х
rilievo materico (pareti verticali, coperture, infissi,)	Х	Х	Х
indagini sull involucro		Х	Х
targHe generatori di calore	X	Х	Х
progetto di impianto termico (riscaldamento/raffrescamento, ventilazione, acs)	X	Х	Х
libretto di impianto	X	Х	Х
elenco apparecchiature elettriche ed elettroniche			Х
progetto/caratteristiche impianto di illuminazione esistente		Х	Х
progetto/caratteristiche impianto di sollevamento cose/persone		Х	Х
progetto/caratteristiche eventuali impianti f.e.r esistenti	Х	Х	Х
caratteristiche d'uso della struttura (uso vani, orari di apertura,)			Х
caratteristiche di conduzione degli impianti (ore di accensione, tipo di conduzione,)			Х
dati climatici interni ed esterni			Х
dati storici di consumo dei vettori energetici (gas, energia elettrica,)			Х
dati storici di eventuali sistemi di monitoraggio dei consumi			Х
			•

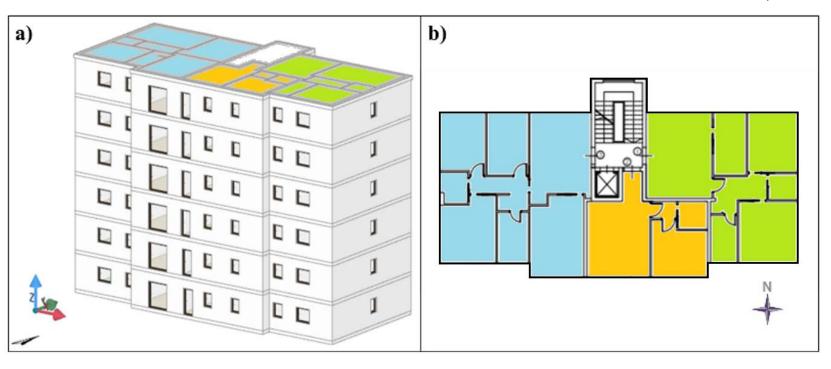
Ape = Attestato di prestazione energetica Prog = Progetto energetico DE = Diagnosi energetica

- Energy Plus	di (L
O Simulazion	S (/
metodo dinamico orario UNI EN ISO 52016-1	A (7

Tipo di valutazione	Dati di ingresso			Scopo della valutazione
	Uso	Clima	Edificio	
di Progetto (Design rating)	Standard	Standard	Progetto	Permesso di costruire Certificazione o Qualificazione energetica del progetto
Standard (Asset rating)	Standard	Standard	Reale	Certificazione o Qualificazione energetica
Adattata all'utenza (<i>Tailored rating</i>)	In funzione dello scopo		Reale	Ottimizzazione, Validazione, Diagnosi e programmazione di interventi di riqualificazione

audia COLOSIMO





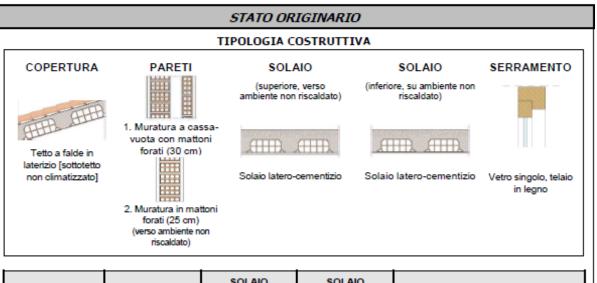
Edificio Esistente in c.a., 63 comuni

0	edificio	rappresentativo	parco	esistente
---	----------	-----------------	-------	-----------

- tamponature in doppia pelle \rightarrow U = 1.10 W/m²K
- solaio latero-cementizio \rightarrow U = 1.65 W/m²K
- superficie finestrata = 15%; singolo vetro + legno \rightarrow U = 4.9 W/m²K
- o radiatori + caldaia ($\eta_{caldaia} = 0.80$); setpoint = 20°C

HDD	climatic zone	heating period (mm/dd)	daily heating
< 600	A	12/1 - 03/15	6 hours/day
601 - 900	В	12/1 - 03/31	8 hours/day
901 - 1400	C	11/15 - 03/31	10 hours/day
1401 - 2100	D	11/1 - 04/15	12 hours/day
2101 - 3000	E	10/15 - 04/15	14 hours/day
> 3001	F	no limitations	no limitations

Edificio di Riferimento: TABULA

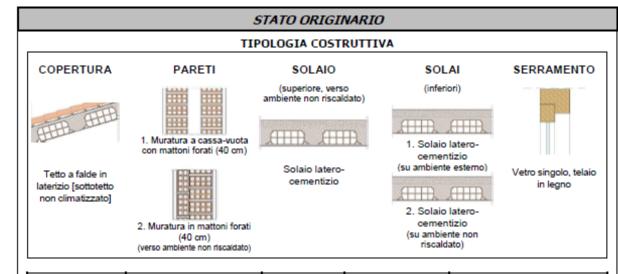

Regione/Zona climatica: Area climatica media

Classe di epoca di costruzione: 5 (1961-1975)

Classe di dimensione edilizia: Edificio multifamiliare

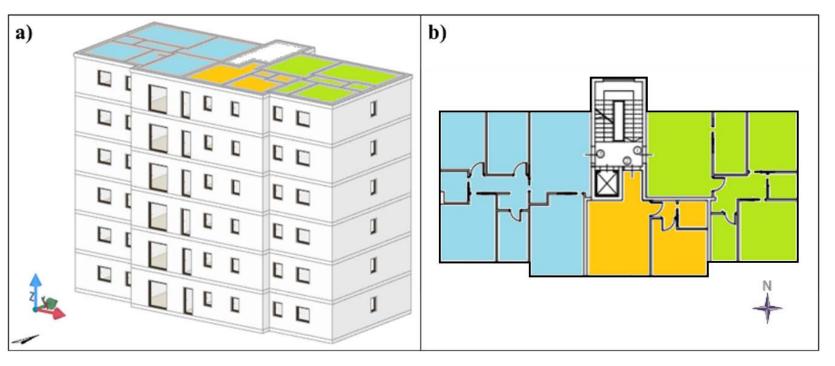
V [m³]	S/V [m ⁻¹]	$A_{\mathrm{f,I}}$ [m²]	Numero di appartamenti	Numero di piani climatizzati	
3074	0,54	934	10	5	

COPERTURA	PARETI		SOLAIO (superiore)	SOLAIO (inferiore)	SERRA	MENTO
<i>U</i> [W/(m²K)]	U ₁ [W/(m ² K)]	U ₂ [W/(m ² K)]	<i>U</i> [W/(m ² K)]	<i>U</i> [W/(m ² K)]	<i>U</i> [W/(m ² K)]	9atn [-]
2,20	1,15	1,52	1,65	1,30	4,90	0,85


Regione/Zona climatica: Area climatica media

Classe di epoca di costruzione: 5 (1961-1975)

Classe di dimensione edilizia: Blocco di appartamenti


<i>V</i> [m³]	V 3/V Atl		Numero di appartamenti	Numero di piani climatizzati	
9438	0,46	2869	40	8	

COPERTURA	PARETI		SOLAIO (superiore)		LAI riori)	SERRA	MENTO
<i>U</i> [W/(m ² K)]	<i>U</i> ₁ [W/(m ² K)]	<i>U</i> 2 [W/(m ² K)]	<i>U</i> [W/(m ² K)]	U ₁ [W/(m ² K)]	U_2 [W/(m 2 K)]	<i>U</i> [W/(m ² K)]	9ø.n [-]
2,20	1,10	1,13	1,65	1,56	1,30	4,90	0,85

Edificio di Nuova Costruzione in c.a., 63 comuni

heating period (mm/dd)

12/1 - 03/15

12/1 - 03/31

11/15 - 03/31

11/1 - 04/15

10/15 - 04/15

no limitations

- edificio rappresentativo nuove costruzioni
- tamponature in doppia pelle isolate \rightarrow U = 0.28 W/m²K
- solaio latero-cementizio **isolato** \rightarrow U = 0.17 W/m²K
- superficie finestrata = 15%; doppio vetro con Argon Iow-e + PVC \rightarrow U = 1.6 W/m²K
- radiatori + caldaia a condensazione ($\eta_{caldaia} = 1.05$); setpoint = 20°C

climatic zone

HDD

< 600

601 - 900

901 - 1400

1401 - 2100

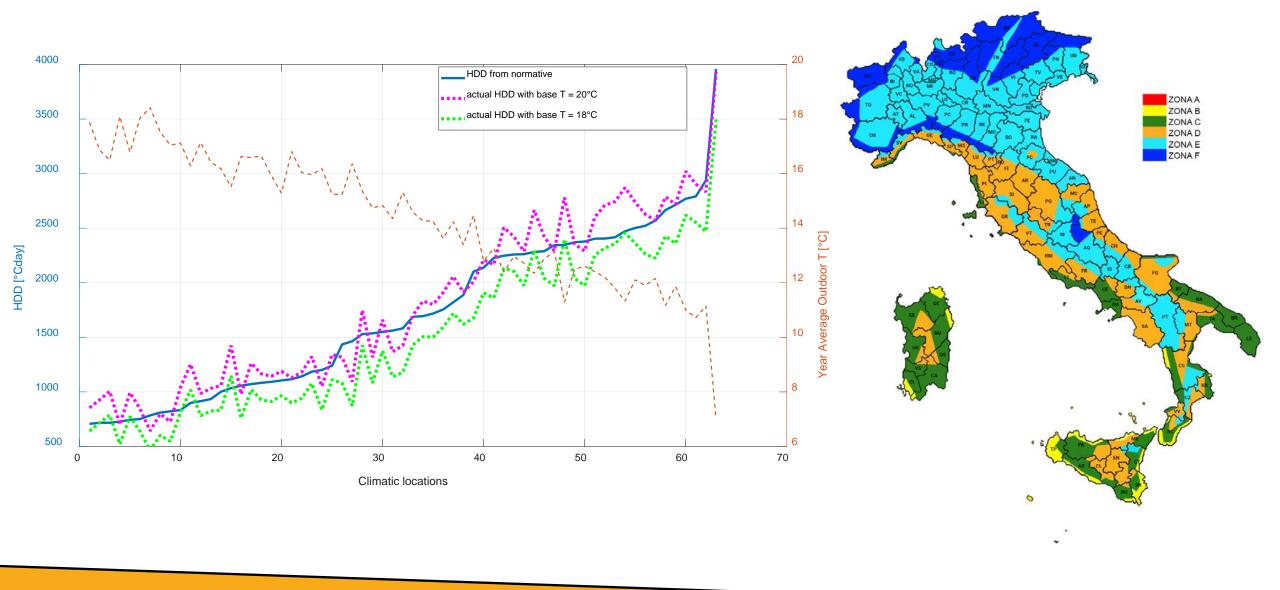
2101 - 3000

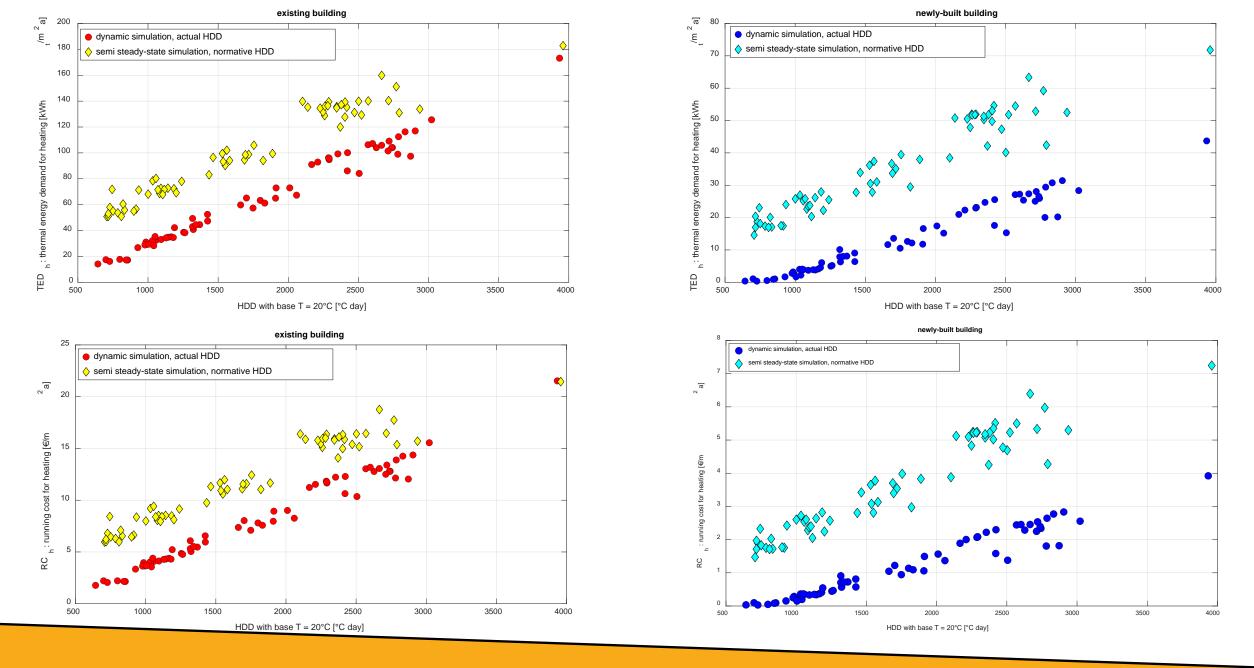
> 3001

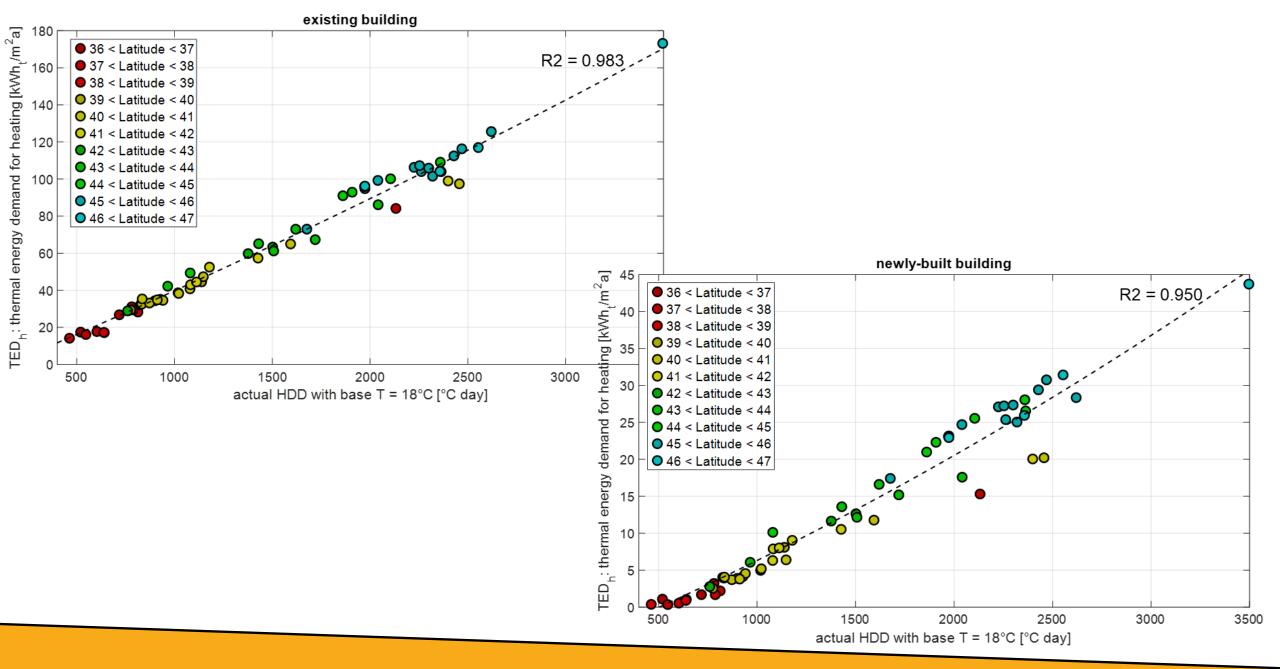
daily heating

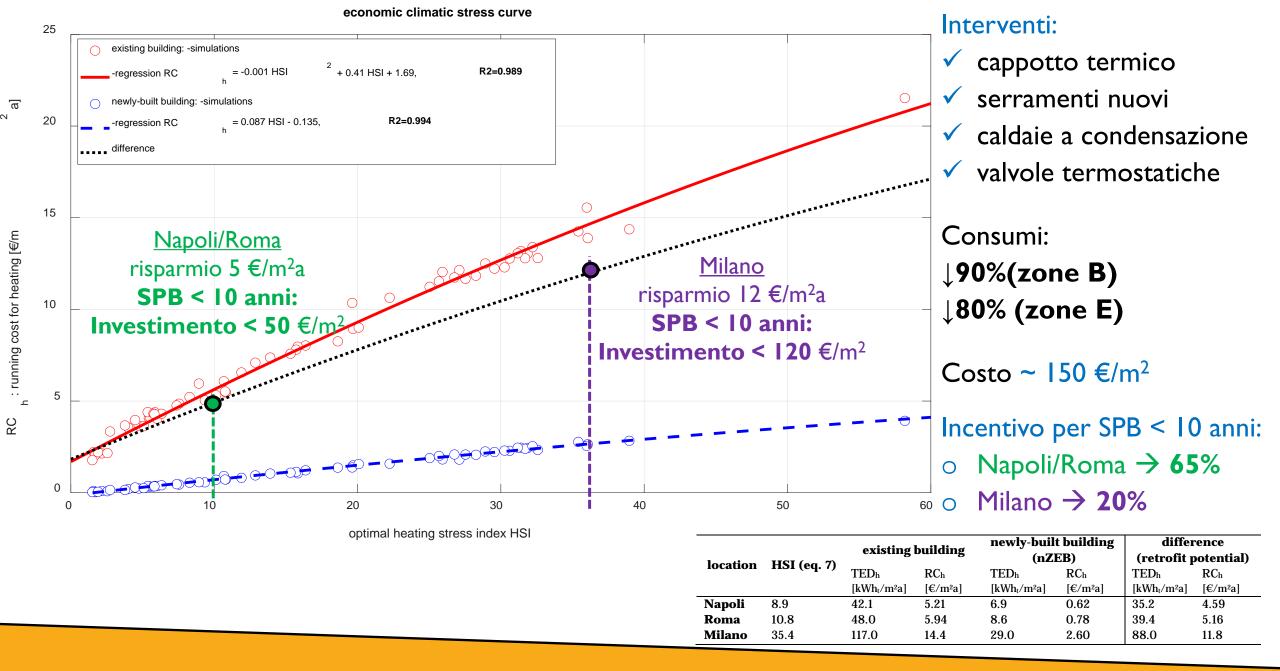
6 hours/day

8 hours/day

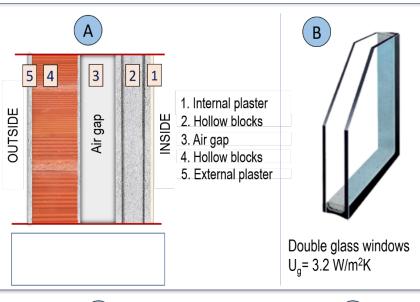

10 hours/day


12 hours/day


14 hours/day


no limitations

Gradi Giorno



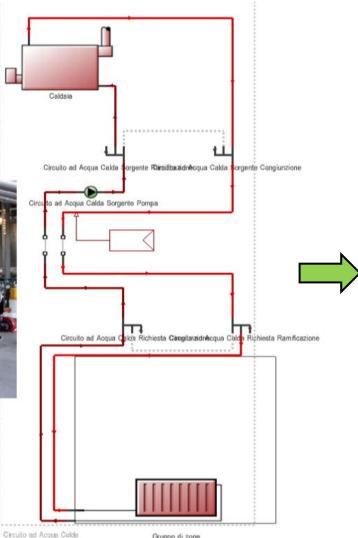
Complesso residenziale in c.a., Roma, 8 piani


WINTER HEATING: centralized boiler and in-room hot water radiators.

SUMMER COOLING: DX split systems.

Complesso residenziale in c.a., Roma, 8 piani

Geometria & Involucro Edilizio


DIMENSIONI E GEOMETRIA DEI PRINCIPALI EDIFICI									
Superficie totale dell'edificio	e	27'726 m²		Lunghezza Lotto		125 m	Volume lordo	94	'908 m³
Altezza interpian	10	3.50 m		Larghezza Lotto		65 m	Superficie copertura	34	464 m²
INVOLUCRO EDILIZIO									
U _{PARETI ESTERNE}	O	0.95 W/m ² K	Uc	OPERTURA	2.86	W/m ² K	Windows SHGC 0.75		0.75
U _{PIANO TERRA}	2	2.68 W/m ² K	\mathbf{U}_{7}	WINDOWS	5.7 – 3	.2 W/m ² K	Portata di infiltrazione	,	0.75 h ⁻¹
Area opaca, finestrata ed esposizioni									
		Tot	al	North	Est		Sud		
Area Lorda Muri [m²]		17'9	19	5'041	4'149		4'767		
Area Lorda Finestre [m ²]		2'6	18	740	605		690		
Percentuale verticale vetrato/opaco [%]			14	.6	14.7	14.6		14.5	

Impianti

3 caldaie a basamento gas naturale 800 kW

Raffrescamento: «dual split» autonomi COP = 2.5

Gruppo di zone

$\eta_g = \eta_e x \eta_{rg} x \eta_d x \eta_{gn}$

1. Rendimento di emissione (ne)

Radiatori	0.94
Ventilconvettori	0,95
Termoconvettori e bocchette aria calda	0,92
Pannelli a pavimento	0,96
Pannelli a soffitto e parete	0,95
Altri	0,92

2. Rendimento di regolazione (η_{re})

Regolazione On-Off	0,94
Altre regolazioni	0,96

3. Rendimento di distribuzione (nd)

Impianti centralizzati con montanti di distribuzione	0,92
Impianti centralizzati a distribuzione orizzontale	0,94
Impianti autonomi	0,96
Altre tipologie	0,92

$$\eta_{gn} = Valore\ di\ base - F1 - F2 - F3 - F4 - F5 - F6$$

dove i riduttivi F rappresentano:

F1 = Riduzione che tiene conto del rapporto tra potenza del generatore e potenza di progetto richiesta;

F2 = Riduzione per installazione all'esterno;

F3 = Riduzione per camini di altezza superiore a 10 m.;

F4 = Riduzione che tiene conto della Temperatura media di caldaia;

F5 = Riduzione da considerare se il generatore è monostadio;

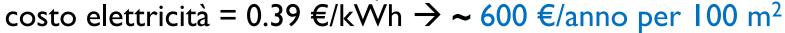
F6 = Riduzione che tiene conto della Temperatura di ritorno in caldaia;

Generatori di calore atmosferici tipo B classificati **

Valore di base	F1	F2	F4
0,90	-0.03	-0.09	-0.02

Generatori di calore a gas o gasolio, bruciatore ad aria soffiata o premiscelati, modulanti, classificati **

$$\eta_g = \eta_e x \eta_{rg} x \eta_d x \eta_{gn}$$


Eta globale stagionale = 0.63

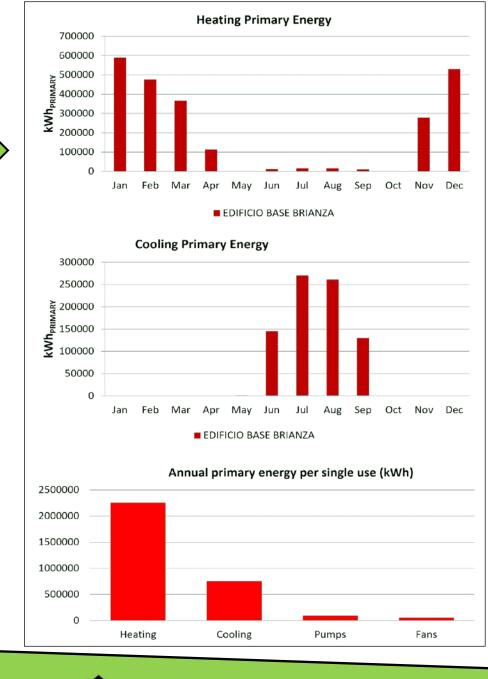
Analisi dinamica «tailored»

o Riscaldamento: 87 kWh_p/m²a

costo gas = 1.34 €/m³ → ~1200 €/anno per 100 m²

o Raffrescamento: **29** kWh_p/m²a


O Riscaldamento:

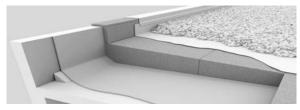

150 kWh_p/m²a

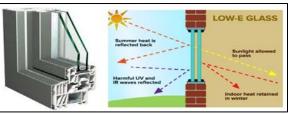
O Raffrescamento:

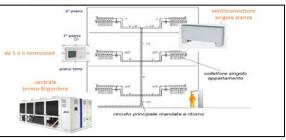
28 kWh_p/m²a

ACS: 31 kWh_p/m²a

Interventi di Retrofit


- cappotto verticale
- * tetto rovescio
- sostituzione dei serramenti
- pompa di calore reversibile con ventilconvettori
- scalda acqua a pompa di calore
- impianto fotovoltaico in copertura


Parameter	Lifetime considered in calculation
Thermal insulation	50 years
Windows	30 years
Technical installation	15 years


Durata interventi di efficientamento energetico, DIN 15459

Cappotto verticale (12 cm PUR \rightarrow U = 0.19 W/m²K)

Vita Utile	50
------------	----

Analisi Energetica

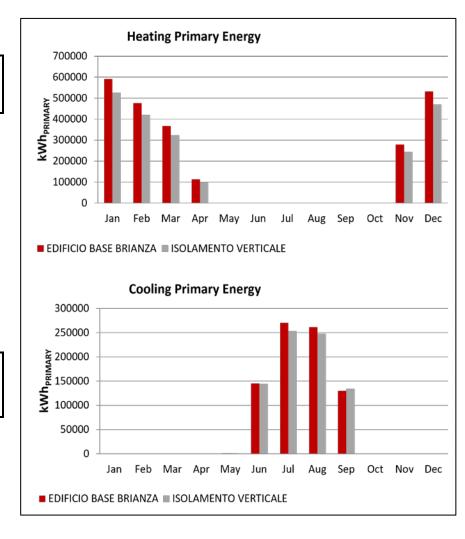
Alialisi Ellergetica			
<u>Riscaldamento</u>			
Riduzione Consumi 12%			
Risparmio [€/100m ² a]	136		
Raffrescamento			
Riduzione Consumi	3.4%		
Risparmio [€/100m²a]	20		

Analisi Economica

Costo unitario [€/m²]	95
Costo per Sup. Calp. [€/m²]	52
SPB (no incentivi) [anni]	34
SPB (20% incentivo) [anni]	27
SPB (40% incentivo) [anni]	20
SPB (60% incentivo) [anni]	13
SPB (80% incentivo) [anni]	7

costo gas	1.34	€/m³
costo en. el.	0.39	€/kWh

Vita Utile 50


Analisi Energetica

<u>Riscaldamento</u>			
Riduzione Consumi	12%		
Risparmio [€/100m²a]	91		
Raffrescamento			
Riduzione Consumi	3.4%		
Risparmio [€/100m²a]			

Analisi Economica

Costo unitario [€/m²]	95
Costo per Sup. Calp. [€/m²]	52
SPB (no incentivi) [anni]	51
SPB (20% incentivo) [anni]	40
SPB (40% incentivo) [anni]	30
SPB (60% incentivo) [anni]	20
SPB (80% incentivo) [anni]	10

0.9 €/m³ costo gas costo en. el. 0.24 €/kWh

Tetto rovescio (12 cm PUR \rightarrow U = 0.27 W/m²K)

Vita Utile	50
------------	----

Analisi Energetica

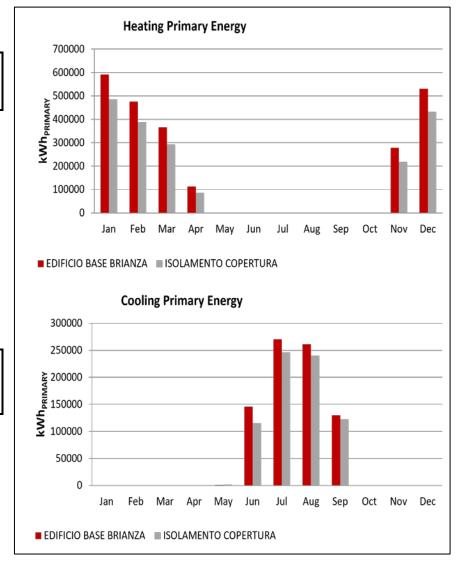
<u>Riscaldamento</u>	
Riduzione Consumi	19%
Risparmio [€/100m²a]	223
<u>Raffrescamento</u>	
Riduzione Consumi	3.4%

Analisi Economica

Costo unitario [€/m²]	125
Costo per Sup. Calp. [€/m²]	16
SPB (no incentivi) [anni]	5
SPB (20% incentivo) [anni]	4
SPB (40% incentivo) [anni]	3
SPB (60% incentivo) [anni]	2
SPB (80% incentivo) [anni]	ı

costo gas	1.34 €/m³
costo en. el.	0.39 €/kWh

Vita Utile 50


Analisi Energetica

Riscaldamento	
Riduzione Consumi	19%
Risparmio [€/100m²a]	150
<u>Raffrescamento</u>	
Riduzione Consumi	3.4%
Risparmio [€/100m ² a]	38

Analisi Economica

Costo unitario [€/m²]	125
Costo per Sup. Calp. [€/m²]	16
SPB (no incentivi) [anni]	8
SPB (20% incentivo) [anni]	7
SPB (40% incentivo) [anni]	5
SPB (60% incentivo) [anni]	3
SPB (80% incentivo) [anni]	2

0.9 €/m³ costo gas 0.24 €/kWh costo en. el.

Serramenti (doppio vetro, low-e, con Argon, PVC → U = 1.6 W/m²K)

Analisi Energetica

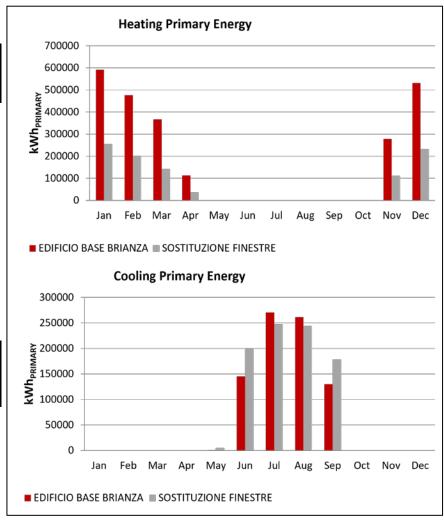
<u> </u>	
<u>Riscaldamento</u>	
Riduzione Consumi	58%
Risparmio [€/100m²a]	670
<u>Raffrescamento</u>	
Incremento Consumi	8%
Incremento costi [€/100m²a]	48

Analisi Economica

Costo unitario [€/m²]	550
Costo per Sup. Calp. [€/m²]	52
SPB (no incentivi) [anni]	8
SPB (20% incentivo) [anni]	7
SPB (40% incentivo) [anni]	5
SPB (60% incentivo) [anni]	3
SPB (80% incentivo) [anni]	2

costo gas I.34 €/m³ costo en. el. 0.39 €/kWh

Vita Utile 30


Analisi Energetica

Allalisi Elici getica	
<u>Riscaldamento</u>	
Riduzione Consumi	58%
Risparmio [€/100m²a]	450
Raffrescamento	
Incremento Consumi	8%
Incremento costi [€/100m²a]	30

Analisi Economica

Costo unitario [€/m²]	550
Costo per Sup. Calp. [€/m²]	52
SPB (no incentivi) [anni]	12
SPB (20% incentivo) [anni]	10
SPB (40% incentivo) [anni]	7
SPB (60% incentivo) [anni]	5
SPB (80% incentivo) [anni]	2

costo gas 0.9 €/m³ costo en. el. 0.24 €/kWh

Pompa di Calore reversibile e ventilconvettori

Vita Utile	15
------------	----

Analisi Energetica

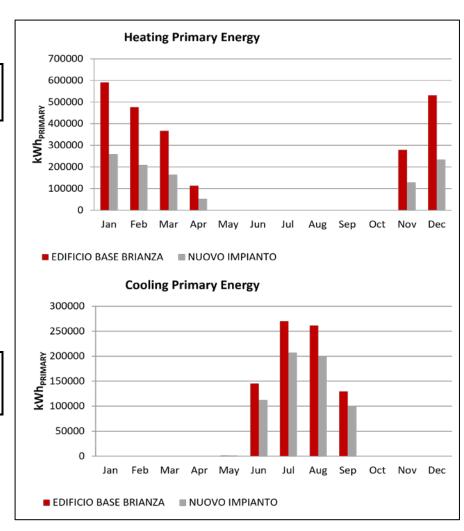
D' 11 .	
<u>Riscaldamento</u>	
Riduzione Consumi	56%
Risparmio [€/100m²a]	405
Raffrescamento	
Riduzione Consumi	23%

Analisi Economica

Costo per Sup. Calp. [€/m²]	56
SPB (no incentivi) [anni]	10
SPB (20% incentivo) [anni]	8
SPB (40% incentivo) [anni]	6
SPB (60% incentivo) [anni]	4
SPB (80% incentivo) [anni]	2

costo gas	1.34 €/m³
costo en. el.	0.39 €/kWh

Vita Utile 15


Analisi Energetica

<u>Riscaldamento</u>	
Riduzione Consumi	56%
Risparmio [€/100m²a]	272
Raffrescamento	
<u>Raffrescamento</u>	
Raffrescamento Riduzione Consumi	23%

Analisi Economica

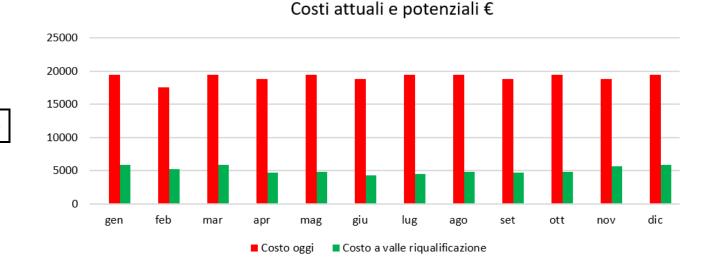
Costo per Sup. Calp. [€/m²]	56
SPB (no incentivi) [anni]	16
SPB (20% incentivo) [anni]	13
SPB (40% incentivo) [anni]	9
SPB (60% incentivo) [anni]	6
SPB (80% incentivo) [anni]	3

0.9 €/m³ costo gas costo en. el. 0.24 €/kWh

Pompa di Calore per ACS

Analisi Economica

Costo per Sup. Calp. [€/m²]	15
SPB (no incentivi) [anni]	2
SPB (20% incentivo) [anni]	2
SPB (40% incentivo) [anni]	I
SPB (60% incentivo) [anni]	I
SPB (80% incentivo) [anni]	0


costo en. el. 0.39 €/kWh

↓ consumi ACS ~ 70%

Analisi Economica

Costo per Sup. Calp. [€/m²]	15
SPB (no incentivi) [anni]	4
SPB (20% incentivo) [anni]	3
SPB (40% incentivo) [anni]	2
SPB (60% incentivo) [anni]	2
SPB (80% incentivo) [anni]	I

costo en. el. 0.24 €/kWh

Impianto Fotovoltaico in copertura

Analisi Economica

Costo unitario [€/kW]	1840
Costo per Sup. Calp. [€/m²]	19
SPB (no incentivi) [anni]	4
SPB (20% incentivo) [anni]	3
SPB (40% incentivo) [anni]	2
SPB (60% incentivo) [anni]	2
SPB (80% incentivo) [anni]	I

costo en. el. 0.39 €/kWh

- 75% tetto (spazio per macchine, manutenzione, camminamento) \rightarrow 2600 m² \rightarrow 290 kW (9 m²/kW)
- Orientati Sud, tilt = 5% + pannelli, impatto visivo
- batterie di accumulo 0.8 kWh/kW
- 90% autoconsumo

Analisi Economica

Costo unitario [€/m²]	1840
Costo per Sup. Calp. [€/m²]	19
SPB (no incentivi) [anni]	6
SPB (20% incentivo) [anni]	5
SPB (40% incentivo) [anni]	4
SPB (60% incentivo) [anni]	3
SPB (80% incentivo) [anni]	I

costo en. el. 0.24 €/kWh

Intervento cumulato

Analisi Economica

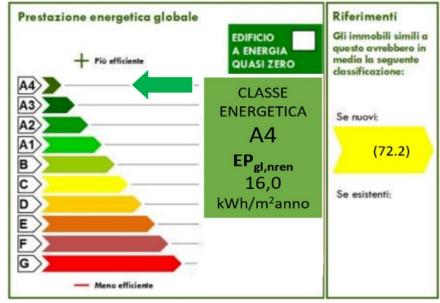
Costo per Sup. Calp. [€/m²]	210
SPB (no incentivi) [anni]	13
SPB (20% incentivo) [anni]	10
SPB (40% incentivo) [anni]	8
SPB (60% incentivo) [anni]	5
SPB (80% incentivo) [anni]	3

costo gas	1.34 €/m³
costo en. el.	0.39 €/kWh

Analisi Economica

Costo per Sup. Calp. [€/m²]	210
SPB (no incentivi) [anni]	20
SPB (20% incentivo) [anni]	16
SPB (40% incentivo) [anni]	12
SPB (60% incentivo) [anni]	8
SPB (80% incentivo) [anni]	4

costo gas	0.9	€/m³
costo en. el.	0.24	€/kWh



L'edificio ha ridotto del 90% la sua domanda di energia primaria, risultando quindi «de-carbonizzato»

Intervento cumulato

Classe A4 ma non nZEB:

- 1. ACS per almeno il 50% da rinnovabile: Sì -> pompa di calore + fotovoltaico
- 2. Riscaldamento + raffrescamento + ACS per almeno il 50% da rinnovabile: NO, ci fermiamo al 39%!
- 3. Fotovoltaico per almeno 70 kW (su copertura di 3450 m²): Sì → 290 kW

De-carbonizzare il parco immobiliare entro il 2050. Possibile?

In 30 anni con un «renovation rate» del 3-4%, Sì.

